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1. Introduction

Large-scale introduction of electric vehicles (EVs) is widely viewed as an important contributor to reducing the energy
consumption and atmospheric emissions of automobile transportation. The degree to which EVs will displace chemical fuel
and deliver zero-emissions driving will be determined by their acceptance in the market, and once accepted, the details of
how they are used in the field. Unlike the case of plug-in hybrid electric vehicles (PHEV) where the first portion of any trip
may be electrified and any remainder completed using chemical fuel, finite range is a critical limitation for EV because trips
(defined as the distance traveled between adequate charging opportunities) longer than the battery range cannot be under-
taken at all. Thus, reliable estimates of the electrification potential of EV in a given region must begin with understanding of
individual transportation needs (how each existing vehicle is used) combined with individual willingness to accept any
shortcomings of an EV as a substitute for that existing non-plug-in vehicle. While individual response to the inconvenience
of limited range depends on the specific context, such as availability and willingness to use alternatives as well as purely
emotional needs, the frequency of that inconvenience — or more precisely, the distribution of the that inconvenience across
the population - can be inferred from vehicle usage data. Acceptance of EV in a given population can then be estimated based
on an assumed typical tolerance for inconvenience. However, while there is interest in electrification all over the world, indi-
vidual vehicle usage data suitable for such analysis is available from instrumented vehicles participating in just a few multi-
day usage studies - usually designed for other purposes. Pearre et al. (2011), Khan and Kockelman (2012) and Tamor et al.
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(2013) recently analyzed private vehicle usage data from Atlanta, Puget Sound and Minneapolis-St. Paul respectively to char-
acterize the inconvenience of finite EV range, and obtained similar results. In all cases this inconvenience, as measured by the
number of days per year on which the instrumented vehicle was driven a distance greater than a presumed EV range, was
substantial for any realistic value of that range. With highly detailed usage data that include GPS positioning, it is possible to
conduct much more elaborate studies that optimize both vehicle capabilities and the location of battery charging (for exam-
ple, Dong et al., 2014). The goal of this work is to develop tools for estimation of the acceptance and electrification impact of
EV in regions where such data is not available.

Usage data is more generally available at higher levels of aggregation. At an intermediate level of detail, ensemble data
that reflect the distribution of daily driving distances for a population - but not that of any individual - is available for many
regions. For the US, the most widely cited of these is the National Household Travel Survey (NHTS, 2009). At the extreme of
simplicity and general availability, the average annual miles traveled per vehicle (annual VMT) can be found in economic and
demographic databases for nations and cities all over the world, but there is no obvious means to transform total annual
travel into a distribution of daily trip distances. Given the paucity of detailed usage data and the regional variations in usage
that might impact the design and utility of electrified vehicles, even a crude method to approximate the distribution of indi-
vidual usages from ensemble data would be extremely valuable. We develop such a general method via several steps. First,
we describe the results of a statistical analysis of usage data from Puget Sound, Minnesota and Germany using the method-
ology we have described previously (Tamor et al., 2013). Next, we show that the strong similarity between those results is
attributable to similar distributions of the parameters that describe individual vehicle usage. Finally, we show how the read-
ily-described distribution of just one of those parameters can be used to estimate EV acceptance (at an assumed tolerance for
inconvenience) as a function of range with surprising fidelity. We also suggest other applications of this simplified represen-
tation of vehicle usage.

2. Statistical description of travel

For this study we consider only the simplest case of overnight charging for EV and so characterize the frequency distri-
bution of full-day driving distance. The frequency distribution of daily driving distance of individual vehicles was extracted
from three additional studies: the Puget Sound Regional Council Traffic Choices Study (PSRC, 2008); 446 vehicles in the
greater Seattle area, the Commute Atlanta Value Pricing Program (Guensler and Williams, 2002 and Ogle et al., 2005);
651 vehicles in greater Atlanta, and the Europe Field Operations Test (euroFOT, 2012); 100 midsized Ford vehicles in several
German cities. Like the Minnesota study, the Puget Sound and Atlanta studies are based on demographically representative
participant selection. The euroFOT was a non-representative study conducted to study safety-related systems in suitably
equipped Ford vehicles, but is included here as demonstration of our methodology for non-US vehicle usage.

We characterize the driving pattern of each vehicle using the methodology previously applied to vehicle data from the
133 vehicles participating in the Minnesota Mileage-Based User Fee Demonstration Project (Minnesota, 2006; Tamor
et al,, 2013). In that work we showed that the distance-frequency distribution of daily travel distance for an individual vehi-
cle, labelled i, is well represented by a simple distribution,

Fi0) = 2 M (1 - wy) Pt 1)
i \/2To?

where x is the one-day travel distance. The first term represents a broad, ‘random’ distribution with characteristic distance k;
that includes both frequent short-distance travel days and occasional very long ones. The second term represents a repeated
‘habitual’ daily distance, y; (with variability o;) that we associate with commuting to work or another regular destination.
The parameter w; is the probability that a given day of driving is a member of the ‘random’ distribution. [With no information
other than daily travel distances, this identification of habitual travel is in good agreement the fraction of ‘commuting’ travel
in the NHTS (2009) where the purpose of each trip is known (see Table 1).] The fifth parameter, /;, is the probability that a
given vehicle is driven on a given day.

Table 1

Fit parameters for Figs. 2 and 4. The habitual fraction is the fraction of actual travel distance (as opposed to number of travel days) associated with the habitual
term of Eq. (1), and can be compared to the fraction of commuting survey studies such as the NHTS. The value of </;w;> for Atlanta is actually </;><w;> due to
the scripting error described in the text. The two parameters that dominate the estimated acceptance, Z and o appear to vary in proportion to dso, a widely
available metric of daily driving behavior.

ki Ui i <Jwp dso Zi|dso o/dso Habitual Fraction
Zy o Zy o 11 -2, o

Puget Sound 294 3.0 22.0 29 0.80 4.0 0.49 42 0.70 0.057 0.21

Minnesota 48.5 4.2 38.5 3.5 0.66 495 0.41 67 0.72 0.086 0.39

Atlanta 36.7 3.4 329 24 </>=0.89 0.54 55 0.67 0.062 0.20

Germany 335 31 14.3 1.8 0.77 3.25 0.45 48 0.69 0.065 0.23

NHTS (2009) 64 0.29
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Fig. 1. (a-e) Fraction of users accepting an EV (based on inconvenience only) as a function range for four values of the inconvenience threshold in four
regions: (a) Minneapolis-St. Paul, (b) Puget Sound, (c) Atlanta, (d) Germany, and (e) all four regions shown with electric range normalized to ds, for each
region. (The 3-day/year curves are omitted from Fig. 1e for visual clarity.)

Previous investigators have used several different distributions to describe day-to-day variation in individual travel dis-
tance. These include the Weibull distribution (Kitamura et al., 1997; Traut et al., 2011), the normal distribution (Neubauer
et al., 2012) and the Gamma distribution (Greene, 1985). More recently, Lin et al. (2012) used the Puget Sound data to com-
pare the log-normal, Weibull and Gamma distributions and found the last to be the most effective of the three in capturing
individual driving patterns. While it is no surprise that an additional parameter can improve the quality of fit in all cases, we
suggest Eq. (1) does a better job capturing travel behavior for more fundamental reasons. First, it appears to be effective in
identifying repeated travel routines without need for travel diary or GPS location analysis that specifies travel purpose. Sec-
ond, the Weibull and Gamma distributions cannot simultaneously have finite value near zero and a peak away from zero. In
consequence, they will underestimate the frequency of short trips whenever a distinct habitual peak appears. Inspection of
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Fig. 2. The probability distributions of the random scale factor, k;, and habitual distance, y; for the four vehicle usage data sets: (a) and (b); Minnesota, (c)
and (d); Puget Sound, (e) and (f) Atlanta, and (g) and (h); Germany. The fit function, Eq. (2), is integrated over the same bin intervals as the data.

the sample distributions for Minnesota (Tamor et al., 2013), Puget Sound (Fig. A4) and Atlanta (Fig. A7) confirms the impor-
tance of the additional degrees of freedom in Eq. (1). While some of these examples do resemble the Gamma or Weibull dis-
tributions, many clearly do not.

Following the procedure described in analysis of the Minnesota usage data, Eq. (1) was fit to each individual daily travel
distance distribution using a non-sorting genetic algorithm (Deb et al., 2000). The normalized log-likelihood, In(A)/N, where
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Fig. 3. Distribution of w;, the probability that a given day of travel is ‘random’ (i.e. a member of the exponential distance-frequency distribution) for the
four vehicle usage studies. The greater frequency of lower values of w; in the Minnesota data is attributed to a bias toward commuting trips where only one
‘primary’ vehicle in each household has been instrumented. The solid curve is a simple function approximating the distributions for Atlanta and Puget
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Fig. 4. Distribution of /; the probability that a given vehicle is driven on a given calendar day, for three of the four usage studies. Values computed for the
Atlanta data were unreliable due to an analysis error. The solid curves are a modification of Eq. (2) fit to the distributions.

A is the maximum likelihood value and N is the number days the vehicle was driven, was the metric of quality of each fit. The
appropriateness of Eq. (1) was confirmed for the Puget Sound and Atlanta data sets by the well-behaved distributions of
In(A)/N, and by visual assessment of the three best, three worst and many randomly selected intermediate-quality fits in
each data set. Eq. (1) is found to be a good representation of the actual distribution of daily driving distance for well over
95% of vehicles in all four studies. [The quality-of-fit parameters were not available for the euroFOT data set, but the
observed quality of the fits was similar to that of the other three data sets.] The distribution of the quality-of-fit parameter
(where available), sample daily drive distance distributions, and the matrix plots indicative of correlations between the fit
parameters are included in Appendix A. The value of y;/g; was limited to a minimum of 4 to prevent the appearance of a very
broad peak that does improve the fit but is not plausibly associated with a repeated travel routine. This limit also assures that
the finite probability of a negative trip length that is allowed by Eq. (1) is miniscule (i.e. the habitual peak is always at least
20; away from the origin). A secondary consequence of this limit is that the fitting routine would occasionally assign the
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Fig. 5. Distribution of the product /; x w; for three usage studies. The bias toward lower values in the Minnesota data is attributed to the high fraction of
commuting in the single ‘primary’ vehicle instrumented in each household.

habitual peak to a single outlying drive event resulting in a large value of u; with w; = 1. Because no weight is assigned to this
long ‘habitual’ trip, the error does not affect any further analysis.

Again similar to Tamor et al. (2013) we computed the fraction of each sample population that might ‘accept’ an EV as a
substitute for a conventional vehicles based on a threshold of inconvenience. This threshold is defined in terms of the num-
ber of days per year that a given EV range was insufficient for that day’s driving. Users (actually vehicles) below the threshold
of inconvenience, are presumed to have ‘accepted’ an EV and will use it on all days for which its range is sufficient and find
alternative transportation on those days for which it was not sufficient, while those above the threshold simply refuse to use
an EV at all. The threshold was varied from 1 to 27 days per year to reflect a wide range of individual tolerance and avail-
ability of alternatives. Fig. 1a-d show the fraction of the vehicle population that may be replaced with EVs as a function of
electric range for several values of the inconvenience threshold in each of the four regions studied. The general shapes of
these acceptance curves are remarkably similar. This similarity was tested by scaling the electric range in each case to a dis-
tance, dso, defined as the 50% point in the cumulative driving distance of the entire population as a function of single-day
driving distance (i.e. 50% of all driving by the entire population was accomplished on driving days covering dso or fewer
miles). As shown in Fig. 1e, the acceptance curves tend to superpose with this scaling. This finding strongly suggests a deeper
commonality of individual variations in vehicle usage, and therefore that the acceptability (as defined here) of an electric
vehicle of given range in a given region might be estimated from a single ensemble metric, dso, for that region.

3. Meta-distributions

With the usage of each individual vehicle characterized by the set of parameters in Eq. (1), it follows that the entire pop-
ulation might be described by the distributions of those parameters: the ‘meta-distributions.” However, to do so requires an
understanding of any correlations between those parameters. Such correlations would be apparent in the matrix plots of the
parameters (included in the Appendix). As described earlier, the only significant correlations are due to artifacts of the fitting
procedure itself. This complete lack of correlation is a huge simplification in that the distribution of individual vehicle usages
can be represented by the independent distributions of the fit parameters.

Fig. 2a-h show the distribution of k; and ; for the four data sets analyzed. Fig. 3 shows the distribution of w; for the four
data sets. Fig. 4 shows the frequency distribution of /; for three of the four sets. Unfortunately, the /; values for the Atlanta
data were lost due to a scripting error. For this analysis we substitute </;> = 0.89, computed from a later survey of travel in
the same region (Atlanta Regional Commission, 2011). The parameter distributions are similar in all cases except that of w;.

We find that distributions of k; and y; are well characterized by the log-logistic distribution:

s = () (1+ (%)“)72, @)

where Z locates the peak and o characterizes the ‘sharpness’ of the frequency distribution. The distribution of /; is similarly
characterized by Eq. (2) by replacing x (a distance) with 1.1 — Z;. (The offset value of 1.1 was chosen by visual inspection and
is not a fit parameter.) The values of the resulting fit parameters are listed in Table 1.

As shown in Fig. 3, the distributions of w; are similar in that very low values (vehicles for which most days of travel are
habitual) are rare, and there is a general trend toward an increasing frequency of cases with fewer ‘habitual’ driving days.
However, while the Puget Sound and Atlanta distributions appear very similar, the Minnesota distribution is biased toward
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Fig. 6. Replica of Figs. 1a through 1d including the acceptance computed from the product of Eqs. (3) and (6) using distribution parameters in Table 1
(dashed lines) and the result of brute force trip counting (dotted lines). The values of the inconvenience threshold are the same (from bottom to top, 1, 3,9
and 27 days per year). The uppermost curve is Eq. (3), the acceptance limit due to habitual travel alone.

lower values of w;, consistent with the much higher fraction of ‘habitual’ travel shown in Table 1. We suspect that this is due
to an important difference between the studies: the Puget Sound and Atlanta studies included a demographically appropri-
ate fraction of multi-vehicles households in which all vehicles were instrumented, while the Minnesota study instrumented
only one vehicle in each participating household - presumably the vehicle driven most, and therefore of greater interest in a
road pricing study. The inclusion of only the primary (or only) vehicle in each household also explains why the Minnesota
and FOT data sets do not exhibit many cases of w; near 1.0. In short, a ‘second’ car is often not used for a regular trip. Although
we do not use it in the simplified representation below, we can approximate the distribution of values of w; for the Puget
Sound and Atlanta studies with a simple exponential, flw;) = (o + 1)(w;)* with o = 3.8 (the solid curve in Fig. 3). As explained
in the next section, the distribution of the product /; x w; is more important to our analysis, and is shown for the same three
vehicle populations in Fig. 5. Again, the relative shift in the Minnesota distribution is attributed to the higher fraction of
‘habitual’ travel days.

4. Analytic acceptance

The stated purpose of this work is to create a general, analytic estimate of EV ‘acceptance’ that is simple to compute. To do
so, we represent the fraction of the population that might accept an EV of a given range, R, as the product of two probabil-
ities: (1) the probability that any given vehicle will have a ‘habitual’ daily range, u;, less than R, and (2) the probability that
the inconvenience of longer trips from the ‘random’ distribution for that vehicle will not exceed a chosen threshold. The first
is given by:

1
P(i; < R) = ————-. (3)
B2
I

Implicit in Eq. (3) is the assumption that every vehicle makes enough ‘habitual’ trips (more than 27 per year) that the exact
value of w; is irrelevant. The fraction of vehicles not exceeding an inconvenience threshold is determined in two steps. First,
from the random term in Eq. (1), for a single vehicle labeled i, the probability that a single-day travel distance, x, will exceed
the electric range, R, is given by
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Pi(x >R) =e ®/k (4)

Second, we define a critical value of k;, k. where substitution of a vehicle with k; greater than k. by an electric vehicle with
range R will cause unacceptable inconvenience. This is given by

R
In(N/(365" < iw >)) )

ke(N,R) = —

where N is the threshold of inconvenience and <Aw;> is the population-average probability of making a random trip on a
given day (shown in Table 1). We have made this simplification to eliminate the need for mathematically elaborate
convolution integrals over the distribution of 4; x w; (Fig. 5). The impact of this simplification was tested by computing
the appropriately weighted average of the results for five values of J; x w; centered on <iw;>. The result was
indistinguishable from those shown below. The probability that k; for a given vehicle selected at random will not exceed
k¢ is then given by

1

Fig. 6a-d compare EV acceptance estimated by the generalized model (the product of Eqgs. (3) and (6) using the
parameters from Table 1) to that computed using the more elaborate statistical characterization of each individual vehicle
(Fig. 1a-d).

We can further test the accuracy of the generalized model by brute force counting of days of inconvenience (driving
distance greater than an assumed electric range) with results shown as the dotted curves in Fig. 6a-c. [This is the method
used by both Pearre et al. (2011) and Khan and Kockelman (2012).] The coincidence of the acceptance curves shows that
for the purpose of estimating EV acceptance, the very simple analytic method is just as effective as the most painstaking
method based on a record of each drive for each vehicle over many months operation. Fig. 2 suggests why this should be
the case: the ‘habitual’ travel distance, whether for commuting or some other purpose, is very rarely more than 60 miles,
well within the capability of EVs on the market today. The rarity of long ‘habitual’ trips is reflected in the habitual limit to
acceptance in Fig. 6. In other words, occasional longer trips have much greater impact on EV acceptability than regular
commuting travel.

A further simplification is possible. Table 1shows that <.w;>, Zi/dso and oy /dso are nearly the same for all four
data sets. This implies that the only calibration parameter needed to represent the inhomogeneity of vehicle usage or
estimate EV acceptance in a given region is dso, which is readily obtained from ordinary survey reports of one-day
travel distances from a large population. For example, the NHTS could be used to determine dso, and thereby EV
acceptance for the US as a whole or for subsets based on region, vehicle type, family income and numerous other
descriptors.

P(k; < k.(N,R)) = (6)

5. Conclusions and directions for further research

We have shown that a simple analytic equation (Eq. (6)) using only a single distance parameter - dso, the 50th percentile
of the regional ensemble cumulative daily distance distribution — can predict with surprising accuracy the inconvenience of
replacing conventional vehicles with electric vehicles of a given range. For this purpose, the first, ‘random’ term in Eq. (1)
dominates, and from Eq. (6) we show that even with at-home charging only, the inconvenience of EVs with an all-weather
range of roughly 60 miles, for examples the Ford Focus Electric, BMW i3 and Nissan Leaf, is not driven by regular travel such
as for commuting, but rather by the occasional long trips nearly all vehicles make. This implies that the popular focus on
urban commuting and at-work or public charging infrastructure may be misplaced; long commutes are rare and commuting
accounts for a surprisingly small fraction of all automobile travel. While comforting, at-work and public charging may not be
essential to a high degree of electrification of personal travel. Conversely, very long range EV, such as the Tesla, have no need
for charging away from home on a daily basis and so would rely on daytime charging only on much longer journeys. Plug-in
hybrids (PHEV) are a very different case where Eq. (3) can be used to estimate the incremental increase in electrified travel
by charging the much smaller PHEV battery at a presumed habitual destination. Here the benefit may be significant, but the
rate of charging need not be very high. Together, these observations suggest a very different strategy for the design and loca-
tion of EV and PHEV chargers.

While only the three US studies are demographically representative, the less representative data from Germany is also
well described by the same set of distributions. This invites the hypothesis that usage patterns in all rich-world regions
with high rates of vehicle ownership can be described the same way. Our ongoing research seeks to test the validity of
this hypothesis. Our findings suggest two directions for further research. First, up to this point we have assumed a com-
mon tolerance for the inconvenience of limited EV range regardless of individual circumstances. Studies that analyze the
availability of and willingness to use alternative transportation modes in specific regions would replace an intuitive esti-
mate in the middle of the range we have studied (i.e. three to nine days per year) with real data. By far the most con-
venient form of alternative transportation is another automobile in the same household. In the US, nearly 85% of all
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automobiles have one more ‘housemates.” We have completed a similar analysis of EV acceptance in two-vehicle house-
holds the results of which are in preparation for publication. Second, our generalized characterization of personal vehicle
usage is easily applied to other studies related to emissions, fuel economy or even consumer choice with simple adjust-
ments for regional characteristics. It also can be reversed in a Monte Carlo simulation that first generates a realistic pop-
ulation of ‘vehicles’ (each characterized by randomly selected values of w;, /; k; and p;) and then uses fi(x) (Eq. (1)) to
generate a realistic distribution of daily trip distances for each vehicle. This would generate a much more realistic
representation of day-to-day vehicle usage than did previous attempts to create synthetic usage patterns (c.f. Kitamura
et al., 1997 and Mohammadian et al., 2010). By direct application of the meta-distributions when mathematically tracta-
ble or by the Monte Carlo method when necessary, it should be possible to compute virtually any parameter that is
sensitive to day-to-day variations of individual behaviors within a larger population. These might include the prospective
benefits of at-work or public charging infrastructure, the distribution of the costs and benefits electrification and other
fuel economy technologies, or the distribution of fuel economy reports across a population.

Appendix A

See Figs. A1-A9
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Fig. A1. The distribution of the quality-of-fit metric, In(A)/N for the Minnesota data set.
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Fig. A2. The matrix plot illustrating the correlation between the fit parameters for the Minnesota. The correlation of p with & is an artifact of the fitting
procedure.
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Fig. A3. The distribution of the quality-of-fit metric, In(A)/N for the Puget Sound data set.
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Fig. A5. The matrix plot illustrating the correlation between the fit parameters for the Puget Sound data set. The correlation of p with o, and cases of large p
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Fig. A7. Examples of daily trip distance distributions for vehicles in Atlanta with the three worst (a-c), the three best (d-f) and three typical (g-i) fits to Eq.
(1).
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Fig. A9. Matrix plot illustrating correlation of the fit parameters for vehicles in the euroFOT study.
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